
Pin Shuai

CEE 5430/6430 Hydrologic Modeling

2/3/2025

1

Introduction to Git and GitHub

Assignment#3 is due today (2/3)

Assignment#4 will be posted later today (due 2/10)

Docker image has been updated. Use docker pull to

update.

2

Announcements and reminders

Introduction to Git

Basic Git commands

Collaboration with Git and GitHub

3

Objectives

Version control tool that tracks file change history (like track

changes for word but much more sophisticated)

Popular among software developers

GitHub is a web platform that is used to store, share, and work on

Git repositories. It is not the same thing as Git.

Other popular platform includes GitLab, BitBucket, SourceForge ...

4

What is Git?

Keep track of changes to

any of your files

Works best with plain

text and relatively small

files (e.g., .txt, .md, .py,
etc)

5

Why should I use Git?

Command line

Windows: Download for Windows; recommended to

select the “Use Git from the Windows Command

Prompt” option

Mac: type git in Terminal and it will prompt you to in‐

stall it

GUI

GitHub Desktop for Win/Mac
6

How to install git

https://git-scm.com/downloads/win
https://github.com/apps/desktop

Distributed version control

Git is a distributed version control system. Everyone work‐

ing on the project has a copy of the repository. There is no

(required) single source of truth or central server.

Everyone can always edit the same file.

7

Terminology

Repository
A repository is where the revision history of a project is stored. It’s a hidden directory,

.git, within the directory your project resides in.

You can reveal the hidden files using ls -a in command line

Normally you don't need to deal with the .git directory directly

Do not delete .git directory. If you delete the .git directory, you lose your project histo‐

ry (and you are stuck with the current state of your files)! Use GitHub as backup.

Warning

8

Terminology

Local vs Remote repositories
Local repositories are repositories that are in your local computer.

Remote repositories are Git repositories that are not local to your

computer. They’re often hosted on platforms like GitHub or GitLab.

e.g., our course repo on GitHub https://github.com/hy‐
droaggie/hydrologic-modeling-course-2024

You will need a remote repository if you want to backup your

codes, share codes and collaborate with others.

9

Terminology

Local vs Remote repositories
Remote repository hosts often add features that are not a part of Git itself such as:

Issues, which allow users to ask questions or report problems

Pull requests, which allow users to suggest changes. This is the typical way to
contribute to other's repository.
Continuous integration and continuous delivery (CICD) build and test codes every

time the repository is updated

Advanced security features detect potential security issues like exposed tokens or

credentials.

10

Terminology

Clone vs Fork
Cloning is you making a local copy of a re‐

mote repository (could be yours or some‐

one else's)

If you Fork first then you have your own ver‐

sion of the repository remotely that you can

pull and push changes to. Fork can avoid

making changes directly on someone else's

repository. This is the recommended
way for contributing to others'
repos.
More on this later.

11

Terminology

Commits
Git does not keep track of every change you make unless you commit it; it is not the same as having

an undo button or a file history. Instead, you commit changes as you see fit.

With Git, every time you commit, or save the state of your project, Git basically takes a picture

of what all your files look like at that moment and stores a reference to that snapshot. --Pro Git

(2nd Edition), Scott Chacon and Ben Straub, 2014

Commits have metadata such as the committer, the author (usually the same as the committer,

but not always), the time, and a message describing the changes.

Every commit has an associated hash (unique ID, e.g., c6452be), which is the name of the commit

according to Git. This is how you reference a specific commit in Git.

12

Terminology

Commits

Always write good commit messages. A good commit

message is concise, descriptive, and informative (not

just "update something").

13

Terminology

Working tree (directory) and staging area
Before you can make a commit, you need to tell Git which changes you want

it to keep track of.

You first work on files in the working tree.

You then move files with changes you want to commit to the staging area.

Only changes in the staging area are included in commits.

14

Terminology

Three File Stages
Untracked/modified: the file is new or modified, but is not part of git's version control

Staged: the file has been added to git's version control but changes have not been

committed

Committed: the change has been committed (created a new version)

15

Terminology

Branches
Git branches are effectively a pointer to a

snapshot of your changes. They allow you

continue to do work (e.g., adding new fea‐

tures or fixing a bug) without messing with

that main branch.

Main: the default branch

Develop: adding new features or fix

bugs

You can create as many branches as you

like, but make sure you merge them often.

main

develop

0-
06
f6
6c
7

1-
98
b5
90
4

2-
b3
28
76
0

3-
66
46
74
4

5-
c9
63
bf
6

6-
44
dd
ad
a

16

Terminology

To start:

git init Create an empty Git repository or reinitialize an existing one. This

will create a .git directory.

git config Configure your username, email address, etc

git config --global user.name "Your Name"
git config --global user.email "your.name@your.domain"
git config --global core.editor nano # or vim if you are
comfortable

git branch show current branch name

17

Git commands

1. Open the Terminal in JupyterLab

2. Create a new directory (e.g., ~/work/myRepo) and ini‐

tialize a Git repository in it

3. Use ls -a to reveal the hidden .git directory

4. Configure your name, email, and editor using git
config

5. Confirm your configuration using git config --list

18

Exercise 1

git status: show file status (untracked, modified, committed, etc.)

git add FILENAME: add untracked files to staging area

use git add . or git add --all to add all untracked files

use git rm --cached FILENAME to remove files from the staging area

git commit commit the staged files to local repository (or version

history). This will open a text editor for a commit message

Or git commit -m YOUR_MESSAGE: commit and specify a message

without opening a text editor

git log see commits in the log

19

Git commands

1. Navigate to the newly created git repository, e.g., cd ~/work/myRepo
2. Create a readme file README.md and add some description in it. Save the file.

nano README.md # or vi README.md

3. Use git status to show file status

4. Use git add to add the readme file and use git status again to check file

status

5. Use git commit -m "COMMIT_MESSAGE" to commit and use git status again

to check file

6. Use git log to see your commit history

20

Exercise 2

git diff view current unstaged differences

git diff --cached view staged differences

git diff earlier-commit-hash later-commit-hash compare differences between two

commits

git diff branch-1 branch-2 compare differences between two branches

$ git diff 897c121 a3374a9
diff --git a/README.md b/README.md
index ce9dfeb..9d1987e 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,2 @@
 this is a readme file.
+second commit # this shows the diff b/w commits; plus sign indicates added content
while minus sign indicates removed content

21

Git commands

1. Edit the README.md in Exercise 2 with some new texts

2. See the changes made using git diff
3. Add the file and commit it

4. View commit history with git log
5. Use git diff earlier-commit-hash later-com‐
mit-hash to view the changes made between those

two commits

22

Exercise 3

Adding a Remote to an Existing Local Repository
If you initialize your repo locally, you can use git remote to configure a remote repo's

information.

git remote add <remote_name> <remote_repository_URL> # Add the Remote Repository

Note, you will need to setup the remote URL first. For example, you can first create a new (emp‐

ty) repository on GitHub. Then use git remote add to configure the local repo. For example,

git remote add origin https://github.com/username/repository.git

Verify the remote URL

git remote -v

23

Working with remote repository

Copying an existing Git repository
Clone a repository from GitHub or other platform

git clone <remote_repository_URL>

View the remote URL

$ git remote -v
origin https://github.com/hydroaggie/hydrologic-modeling-course-2024.git (fetch)
origin https://github.com/hydroaggie/hydrologic-modeling-course-2024.git (push)

It is easier to create the repository on GitHub first. Then clone it to your local system.

Tip

24

Working with remote repository

Synchronizing a local repository with a remote one
git fetch: fetch latest changes from remote repository into your local repo

git pull: fetch latest changes from remote repository AND merge into your local

repo

git push: push local changes to remote repository (e.g., GitHub) if you have permis‐

sions (always pull before push!)

git push -u origin <branch_name> push your branch to the remote; -u short

for --set-upstream
git checkout <branch_name>: switch branches or checkout a new branch; use -b
to create the new branch if it does not exist. E.g., git checkout -b <new_branch>

25

Working with remote repository

26

Git workflow

Create a new repo myRepo under your GitHub account (do not initialize with a

README file).

Copy the remote url. E.g., https://github.com/USERNAME/myRepo.git, and add

the remote to your local repo using git remote add origin <remote_url>
Use git remote -v to confirm the remote url.

Use git push -u origin main to push local repo to the remote repo on GitHub.

You'll need a personal access token for the authentication (see next slide).

$ git push -u origin main
Username for 'https://github.com': pinshuai
Password for 'https://pinshuai@github.com':

Go back to your GitHub repo and view the changes you just pushed.

27

Exercise 4

GitHub no longer accepts password for authentication. To push

and pull from GitHub on CLI, users must create a personal ac‐

cess token (PAT) -- similar to a password but is more secure.

Follow the steps here to create the PAT on GitHub. Simply go to

account Settings --> Developer Settings --> Personal
access tokens, click Fine-grained tokens--> Generate
new token. Make sure to add Read and Write access to the

repository permission!

28

Create a Personal Access Token (PAT)

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens#creating-a-token

29

Create a Personal Access Token (PAT)

Once you have the token, you can authenticate on the command line

You may choose to store your token using git config --global creden‐
tial.helper store first so that you don't need to enter the token every time.

$ git config --global credential.helper store
$ git push
Username: your_username
Password: your_token # this is the token you get from GitHub

Store your token

30

Create a Personal Access Token (PAT)

Go to your myRepo on GitHub. Edit the README.md file by replacing

everything with Hello, Utah!. Commit the changes on GitHub.

Go back to your local repo. Fetch the changes from remote using

git fetch. Notice that we have not merged the changes into

your local README file. Use cat README.md to confirm.

Now try git pull to merge your changes. Use cat README.md to

confirm.

31

Exercise 5

git restore <file> to discard changes in working directory

git restore --staged <file> to unstage a file

git revert COMMIT-HASH revert previous commits. This will preserve

history (different from recover) and it will add a new commit history

use git revert HEAD to revert the last commit

git reset HEAD^ undo commit

git reset --hard origin/main reset current repo to remote main

branch (will delete all new files including ignored files/folders!!!

Backup all files before doing this!)

32

Other useful commands

git merge <new_branch>: merge a new branch into the existing (e.g., main) branch

Conflicts can occur in several situations (e.g., during merge) when you’re using Git.

They’re a normal part of using Git and not an indication that you’ve done something

wrong (the conflict is between versions, not between people!).

They help prevent you from losing information or overwriting someone else’s work.

E.g., When merging branches, you can encounter conflicts if the parent commits

have modifications to the same parts of the project. Git has no way of knowing

which (if any) is the authoritative or correct version.

This may also happen when you are working on two (or more) copies of the same

repo on the same branch

33

Managing conflicts

In your local myRepo, checkout a new branch using git checkout -b new_feature.
Use git branch to confirm the current branch (shown with * in front)

Edit the README.md by changing the word "Utah" to "SLC". Add and commit the README

file with the message "change Utah to SLC".
Now switch back to the main branch using git checkout main
Edit the READEME.md by changing "Utah" to "Salt Lake City". Commit the file with the

message "change Utah to Salt Lake City".
Use git diff main new_feature to see the differences between main and new_fea‐

ture branch

Try merging the new_feature branch into the main branch using git merge
new_feature
You will see a Merge Conflict! Why?

34

Exercise 6

35

Exercise 6

Open the README.md file, and you will see something like below:

<<<<<<< HEAD
Hello, Salt Lake City!
=======
Hello, SLC!
>>>>>>> new_feature

To fix the conflicts, decide if you want to keep only your branch's changes,

keep only the other branch's changes, or make a brand new change, which

may incorporate changes from both branches.

Delete the conflict markers <<<<<<< HEAD, =======, >>>>>>> <branch_‐
name> and make the changes you want in the final merge.

36

Managing conflicts

Fix the conflict by editing the README.md. Save the edits.

Mark the resolution using git add. You will see the following

message:

All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)

Commit the changes using git commit with the message "fix
merge conflict"
Use git log --graph to see a graphic overview of how a reposito‐

ry is branched and merged over time.
37

Exercise 6 cont'd

Push the commits to your myRepo repo on GitHub using git push.
Open your repo on GitHub to verify the changes in the commit history.

38

Exercise 6 cont'd

If you are a contributor (i.e., no permission to the original

repo), a typical workflow looks like this:

1. Fork a pubic git repository to your personal account

2. Open the forked repository on GitHub and clone it lo‐

cally through GUI (e.g, GitHub Desktop) or terminal

(e.g., PowerShell)

3. Create a new branch (e.g., git checkout -b
NEW_BRANCH) and some changes. This is important

to not mess with the main branch.

4. Add, commit, and push the changes to GitHub

5. On GitHub, submit a PR (pull request). After review, a

PR is approved by the original repository owner

39

Collaboration through Git and GitHub

https://desktop.github.com/

If you are a collaborator of a GitHub repo:

1. Clone the repo. No need to fork.

2. Create a new branch (e.g., git checkout -b NEW_BRANCH) and some

changes.

3. Add, commit, and push the changes to GitHub

4. On GitHub, submit a PR (pull request).

When you work collaboratively, you should always work on a branch that is not the

main.

Note

40

Collaboration through Git and GitHub

Learning Git can be frustrating at first, so be patient!

Once you master it, Git becomes your Swiss Army Knife -- you won't

regret it!

Many GUIs are available for using Git (e.g., GitHub Desktop, VSCode

extensions, etc).

Do not store personal information (e.g., passwords) on public

repository

Hosts like GitHub will reject larger files (as of Fall 2024, GitHub “blocks

files larger than 100 MB” and warns about files larger than 50 MB.)

41

A few notes

A README file tells potential users and contributors about your

project.

The README is often written in Markdown, which allows you to add

headings, links, tables, images, and other features. (see tutorials).

This is what’s displayed on project pages on GitHub and similar sites.

It's highly recommended to include a README file in every project!

Note

42

README file

https://www.markdownguide.org/getting-started/
https://www.markdowntutorial.com/

A LICENSE file tells users the conditions under which they can use, redistribute, and even

commercialize your project contents. Potential users or contributors may avoid your project if

the license is unclear.

We recommend including a LICENSE in every project!

43

LICENSE file

git --help get help on

using git

Git Cheat Sheet

44

Getting help

https://www.reddit.com/r/git/comments/5m5fdz/git_cheat_sheet/

CHPC presentation on Git^[1]

Software Carpentry: Version Control with Git: Summary

and Setup

Git - Documentation

^[1] Part of course slides are from the tutorial

45

References and credits

https://www.chpc.utah.edu/presentations/git_2024.pdf
https://swcarpentry.github.io/git-novice/index.html
https://swcarpentry.github.io/git-novice/index.html
https://git-scm.com/doc

