Introduction to Git and GitHub

Pin Shuai
CEE 5430/6430 Hydrologic Modeling

2/3/2025

Announcements and reminders

e Assignment#3 is due today (2/3)
o Assignment#4 will be posted later today (due 2/10)

e Docker image has been updated. Use docker pullto
update.

Objectives

e Introduction to Git
e Basic Git commands
e Collaboration with Git and GitHub

What is Git?

Version control tool that tracks file change history (like track
changes for word but much more sophisticated)
Popular among software developers

GitHub is a web platform that is used to store, share, and work on
Git repositories. It is not the same thing as Git.
Other popular platform includes GitLab, BitBucket, SourceForge ...

git

Why should | use Git?

o Keep track of changes to "FINAL doc

Zh

FINAL_rev.2.doc

any of your files
e Works best with plain
text and relatively small

~

CENAL.doc!

- 7
FINAL _rev.8.commentss.

. T .
f I Ie S (e .g . e -t X -t , . m d . p y, FINAL_rev.6.COMMENTS, dot. A e b prnen

¥

5

FINAL _rev.18.commentst. F(NAL_revﬂmmgn@q‘

corrections?.MORE.30.dot corrections. (0. #@$%WHYDD
ICOMETOGRADSCHOOL P22 .doc

etc)

JORGE CHAM D 2012

uuuuuuuuuuuuuuuu

How to install git

e Command line
o Windows: Download for Windows: recommended to

select the "Use Git from the Windows Command
Prompt” option

o Mac: type git in Terminal and it will prompt you to in-
stall it
e GUI

o GitHub Desktop for Win/Mac

https://git-scm.com/downloads/win
https://github.com/apps/desktop

Terminology

Distributed version control

Git is a distributed version control system. Everyone work-
ing on the project has a copy of the repository. There is no
(required) single source of truth or central server.

e Everyone can always edit the same file.

Terminology

Repository

A repository is where the revision history of a project is stored. It's a hidden directory,
. git, within the directory your project resides in.

e You can reveal the hidden files using 1s —a in command line
¢ Normally you don't need to deal with the . git directory directly

A Warning

Do not delete . git directory. If you delete the .git directory, you lose your project histo-
ry (and you are stuck with the current state of your files)! Use GitHub as backup.

Terminology

Local vs Remote repositories

» Local repositories are repositories that are in your local computer.
 Remote repositories are Git repositories that are not local to your
computer. They're often hosted on platforms like GitHub or GitLab.
o e.g., our course repo on GitHub https://github.com/hy-
droaggie/hydrologic—-modeling—-course-2024
e You will need a remote repository if you want to backup your
codes, share codes and collaborate with others.

Terminology

Local vs Remote repositories

¢ Remote repository hosts often add features that are not a part of Git itself such as:

o Issues, which allow users to ask questions or report problems

o Pull requests, which allow users to suggest changes. This is the typical way to
contribute to other's repository.

o Continuous integration and continuous delivery (CICD) build and test codes every
time the repository is updated

o Advanced security features detect potential security issues like exposed tokens or
credentials.

= O hydroaggie / hydrologic-modeling-course-2024

<> Code (©) Issues 1 Pullrequests ¥ Zenhub (») Actions

Terminology

Clone vs Fork

e Cloning is you making a local copy of a re- REl;zlll}ELST REPO_A FORK

T

mote repository (could be yours or some-
one else's)

e |f you Fork first then you have your own ver-
sion of the repository remotely that you can ¢ome GITHUB YOUR GITHUB
pull and push changes to. Fork can avoid ACCOUNT
making changes directly on someone else's CLONEL PUSH
repository. This is the recommended Clone
way for contributing to others'
repos.

e More on this later.

Terminology

Commits

Git does not keep track of every change you make unless you commit it; it is not the same as having
an undo button or a file history. Instead, you commit changes as you see fit.

With Git, every time you commit, or save the state of your project, Git basically takes a picture
of what all your files look like at that moment and stores a reference to that snapshot. --Pro Git
(2nd Edition), Scott Chacon and Ben Straub, 2014

¢ Commits have metadata such as the committer, the author (usually the same as the committer,
but not always), the time, and a message describing the changes.

e Every commit has an associated hash (unique ID, e.g., c6452be), which is the name of the commit
according to Git. This is how you reference a specific commit in Git.

Terminology

Commits

e Always write good commit messages. A good commit
message is concise, descriptive, and informative (not
just "update something").

o Commits on Jan 25, 2025 (o mmit message Hash

add git/github setup instructions - j
8982b39 (O <>

.‘; pinshuai authored 1 minute ago

Terminology

Working tree (directory) and staging area

Before you can make a commit, you need to tell Git which changes you want
it to keep track of.

 You first work on files in the working tree.
» You then move files with changes you want to commit to the staging area.
e Only changes in the staging area are included in commits.

Local repository
(commits)

add commit
A — &6 — @

Working tree Staging area

Terminology

Three File Stages

¢ Untracked/modified: the file is new or modified, but is not part of git's version control

e Staged: the file has been added to git's version control but changes have not been
committed

 Committed: the change has been committed (created a new version)

Working Staging Area Git Repository

Directory (Local)
(Remote)
n b A A
Add command Commit command Push command
Untracked Tracked Committed Remote

File File File File

Terminology

Branches
Git branches are effectively a pointer to a ,—3—0—.—. """"
snapshot of your changes. They allow you & £ &
continue to do work (e.g., adding new fea- gayaiopt ot e
tures or fixing a bug) without messing with &

that main branch.

e Main: the default branch
e Develop: adding new features or fix
bugs

You can create as many branches as you
like, but make sure you merge them often.

Git commands

To start:

e git init Create an empty Git repository or reinitialize an existing one. This
will create a . git directory.

e git config Configure your username, email address, etc
git config ——global user.name "Your Name"
git config ——global user.email "your.name@your.domain"

git config --global core.editor nano # or vim if you are
comfortable

e git branch show current branch name

Exercise 1

1. Open the Terminal in JupyterLab

2.Create a new directory (e.g., ~/work/myRepo) and ini-
tialize a Git repository in it

3.Use 1s -atoreveal the hidden .git directory

4. Configure your name, email, and editor using git

config
5. Confirm your configuration using git config —-Tlist

Git commands

git status: show file status (untracked, modified, committed, etc.)

git add FILENAME:add untracked files to staging area
o usegit add .orgit add ——allto add all untracked files
o usegit rm —-cached FILENAME to remove files from the staging area

git commit commit the staged files to local repository (or version

history). This will open a text editor for a commit message

o Or git commit -m YOUR_MESSAGE: commit and specify a message
without opening a text editor

git log see commitsinthe log

Exercise 2

1. Navigate to the newly created git repository, e.g., cd ~/work/myRepo
2. Create a readme file README . md and add some description in it. Save the file.

nano README.md # or vi README.md

3.Usegit status toshow file status

4.Use git add to add the readme file and use git status again to check file

status

5.Use git commit -m "COMMIT_MESSAGE" to commit and use git status again
to check file

6.Use git log to see your commit history

Git commands

e git diff view current unstaged differences
o git diff —-cached view staged differences
o git diff earlier-commit-hash later—-commit-hash compare differences between two

commits
o git diff branch-1 branch-2 compare differences between two branches

$ git diff 897c121 a3374a9
diff --git a/README.md b/README.md
index ce9dfeb..9d1987e 100644
——— a/README.md
+++ b/README.md
@ -1 +1,2 @@
this is a readme file.
+second commit # this shows the diff b/w commits; plus sign indicates added content
while minus sign indicates removed content

Exercise 3

1. Edit the README . md in Exercise 2 with some new texts
2.See the changes made using git diff
3. Add the file and commit it

4. View commit history with git Tlog
0.Use git diff earlier—-commit-hash 1later-com-
mit—hash to view the changes made between those

two commits

Working with remote repository

Adding a Remote to an Existing Local Repository

e |f you initialize your repo locally, you can use git remote to configure a remote repo's
information.

git remote add <remote_name> <remote_repository_URL> # Add the Remote Repository

Note, you will need to setup the remote URL first. For example, you can first create a new (emp-
ty) repository on GitHub. Thenuse git remote add to configure the local repo. For example,
git remote add origin https://github.com/username/repository.git

¢ Verify the remote URL

git remote -v

Working with remote repository

Copying an existing Git repository
¢ Clone a repository from GitHub or other platform
git clone <remote_repository_URL>
¢ View the remote URL

$ git remote -v

origin https://github.com/hydroaggie/hydrologic-modeling—-course-2024.git (fetch)
origin https://github.com/hydroaggie/hydrologic-modeling—-course-2024.git (push)
< Tip

It is easier to create the repository on GitHub first. Then clone it to your local system.

Working with remote repository

Synchronizing a local repository with a remote one

git fetch: fetch latest changes from remote repository into your local repo

git pull: fetch latest changes from remote repository AND merge into your local

repo

git push: push local changes to remote repository (e.g., GitHub) if you have permis-

sions (always pull before push!)

o git push -u origin <branch_name> push your branch to the remote; —u short
for ——set-upstream

git checkout <branch_name>: switch branches or checkout a new branch; use -b

to create the new branch if it does not exist. E.g., git checkout -b <new_branch>

Git workflow

Local Remote

working staging localrepo remote
directory area repo

P

=
-

git checkout

Exercise 4

e Create a new repo myRepo under your GitHub account (do not initialize with a
README file).

e Copy the remote url. E.g., https://github.com/USERNAME/myRepo.git, and add
the remote to your local repo using git remote add origin <remote_url>

e Usegit remote -vto confirmthe remote url.

e Usegit push -u origin main to push local repo to the remote repo on GitHub.
You'll need a personal access token for the authentication (see next slide).

$ git push -u origin main
Username for 'https://github.com': pinshuai
Password for 'https://pinshuai@github.com':

e Go back to your GitHub repo and view the changes you just pushed.

Create a Personal Access Token (PAT)

e GitHub no longer accepts password for authentication. To push
and pull from GitHub on CLI, users must create a personal ac-
cess token (PAT) -- similar to a password but is more secure.

e Follow the steps here to create the PAT on GitHub. Simply go to
account Settings ——> Developer Settings ——> Personal
access tokens, click Fine—grained tokens—-—> Generate
new token. Make sure to add Read and Write access to the
repository permission!

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens#creating-a-token

Create a Personal Access Token (PAT)

Repository permissions 2 Selected
Repository permissions permit access to repositories and related resources.

Actions ©
Workflows, workflow runs and artifacts.

Access: No access ¥

Administration &
Repository creation, deletion, settings, teams, and collaborators.

Access: No access ¥

Attestations
Create and retrieve attestations for a repository.

Access: No access v

Code scanning alerts O
View and manage code scanning alerts.

Access: No access v

Codespaces
Create, edit, delete and list Codespaces.

Access: No access v

Codespaces lifecycle admin &
Manage the lifecycle of Codespaces, including starting and stopping.

Access: No access ¥

Codespaces metadata ()
Access Codespaces metadata including the devcontainers and machine type.

Access: No access ¥

Codespaces secrets ()
Restrict Cod user secrets to specific

Access: No access ¥

Commit statuses (O
Commit statuses.

Access: No access ¥

Contents (&
Repository contents, commits, branches, downloads, releases, and merges.

Access: Read and write v

Create a Personal Access Token (PAT)

¢ Once you have the token, you can authenticate on the command line

Store your token

You may choose to store your token using git config --global creden-
tial.helper store first sothat you don't need to enter the token every time.

$ git config ——global credential.helper store

$ git push

Username: your_username

Password: your_token # this is the token you get from GitHub

Exercise b

e Go to your myRepo on GitHub. Edit the README . md file by replacing
everything with Hello, Utah!.Commit the changes on GitHub.

e Go back to your local repo. Fetch the changes from remote using
git fetch. Notice that we have not merged the changes into
your local README file. Use cat README.md to confirm.

e Nowtry git pullto merge your changes.Use cat README.md to
confirm.

Other useful commands

e git restore <file>todiscard changes in working directory
o git restore —-staged <file>tounstage afile
e git revert COMMIT-HASH revert previous commits. This will preserve
history (different from recover) and it will add a new commit history
o use git revert HEAD to revert the last commit
e git reset HEAD”™ undo commit
o git reset —-hard origin/main reset current repo to remote main
branch (will delete all new files including ignored files/folders!!!
Backup all files before doing this!)

Managing conflicts

e git merge <new_branch>: merge a new branch into the existing (e.g., main) branch

e Conflicts can occur in several situations (e.g., during merge) when you're using Git.

e They're a normal part of using Git and not an indication that you've done something
wrong (the conflict is between versions, not between people!).

e They help prevent you from losing information or overwriting someone else’'s work.

e E.g., When merging branches, you can encounter conflicts if the parent commits
have modifications to the same parts of the project. Git has no way of knowing
which (if any) is the authoritative or correct version.

¢ This may also happen when you are working on two (or more) copies of the same
repo on the same branch

Exercise 6

¢ In your local myRepo, checkout a new branch using git checkout -b new_feature.
Use git branch to confirm the current branch (shown with x in front)

¢ Edit the README. md by changing the word "Utah" to "SLC". Add and commit the README
file with the message "change Utah to SLC".

¢ Now switch back to the main branch using git checkout main

¢ Edit the READEME.md by changing "Utah" to "Salt Lake City".Commit the file with the
message "change Utah to Salt Lake City".

e Usegit diff main new_feature to see the differences between main and new_fea-
ture branch

e Try merging the new_feature branch into the main branch using git merge
new_feature

¢ You will see a Merge Conflict! Why?

Exercise 6

Potential for conflict:

@

Hello, Two versions to one
SLC!
n(‘[v \
Hello, Laty, by ?
2999 ancy
Iy \,\e\\°*\
U™

O i

<DMain branch SLgy
Hello, \

Salt Lake City! HEAD

Managing conflicts

e Open the README.md file, and you will see something like below:

<<<<<<< HEAD

Hello, Salt Lake City!

Hello, SLC!
>>>>>>> new_Tfeature

e To fix the conflicts, decide if you want to keep only your branch's changes,
keep only the other branch's changes, or make a brand new change, which
may incorporate changes from both branches.

e Delete the conflict markers <<<<<<< HEAD, =======, >>>>>>> <branch_-
name> and make the changes you want in the final merge.

Exercise 6 cont'd

e Fix the conflict by editing the README. md. Save the edits.
e Mark the resolution using git add. You will see the following
message:

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

e Commit the changes using git commit with the message "fix
merge conflict"

e Usegit log ——graph to see a graphic overview of how a reposito-
ry is branched and merged over time.

Exercise 6 cont'd

¢ Push the commits to your myRepo repo on GitHub using git push.
e Open your repo on GitHub to verify the changes in the commit history.

=) rinshuai / test al(8]-]I(+ -](e)[(n)(=)

<> Code (O Issues I Pullrequests 3 Zenhub () Actions [Projects [OJ wiki @ Security
Commits

¥ main ~ Ax Allusers ~ B Alltime ~
-~ Commits on Jan 28, 2025

fixed merge conflict

d6d6s22 (L] <>
‘Your Name committed 19 hours ago

Salt Lake City

999adbs (0 <>
Your Name committed 19 hours ago

change to SLC

a0231cf (O <
Your Name committed 20 hours ago

Update README.md

& pinshuai authored 20 hours ago

1186213 (0 <>

Initial commit

Verified) b98904d (O <>
& pinshuai authored yesterday

Collaboration through Git and GitHub

If you are a contributor (i.e., no permission to the original
repo), a typical workflow looks like this:

REPOA 5 pegUest REPO_AFORK

(e
1.Fork a pubic git repository to your personal account I!
2. Open the forked repository on GitHub and clone it lo- 1 FORK P 5
cally through GUI (e.g, GitHub Desktop) or terminal
SOME GITHUB YOUR GITHUB
(e.g., PowerShell) ACCOUNT ACCOUT
3.Create a new branch (eg. git checkout -b 2 CLONE 4 PUSH

NEW_BRANCH) and some changes. This is important
to not mess with the main branch. 3. Make some changes
4. Add, commit, and push the changes to GitHub on a new branch
5. On GitHub, submit a PR (pull request). After review, a :
PR is approved by the original repository owner

https://desktop.github.com/

Collaboration through Git and GitHub

If you are a collaborator of a GitHub repo:

1. Clone the repo. No need to fork.
2.Create a new branch (e.g., git checkout -b NEW_BRANCH) and some

changes.
3. Add, commit, and push the changes to GitHub
4. 0On GitHub, submit a PR (pull request).

7 Note
When you work collaboratively, you should always work on a branch that is not the

main.

A few notes

e Learning Git can be frustrating at first, so be patient!

e Once you master it, Git becomes your Swiss Army Knife -- you won't
regret it!

e Many GUIs are available for using Git (e.g., GitHub Desktop, VSCode
extensions, etc).

e Do not store personal information (e.g., passwords) on public
repository

e Hosts like GitHub will reject larger files (as of Fall 2024, GitHub “blocks
files larger than 100 MB" and warns about files larger than 50 MB.)

README file

e A README file tells potential users and contributors about your
project.

e The README is often written in Markdown, which allows you to add
headings, links, tables, images, and other features. (see tutorials).

e Thisis what's displayed on project pages on GitHub and similar sites.

7 Note

It's highly recommended to include a README file in every project!

https://www.markdownguide.org/getting-started/
https://www.markdowntutorial.com/

LICENSE file

e A LICENSE file tells users the conditions under which they can use, redistribute, and even
commercialize your project contents. Potential users or contributors may avoid your project if
the license is unclear.

e We recommend including a LICENSE in every project!

Open-Source Software License Types

Copyleft Licenses Permissive Licenses
GNU General Public License (GPL) Apache License
GNU LGPLv3.0 (Lesser General Public License) BSD License
Mozilla Public License MIT License

Eclipse Public License Unlicense

Getting help

e git ——help get help on
using git
e Git Cheat Sheet

Create a Repository
om scrach - Createa now ocal

eposiory

§ git dntt (project name]

Download from an existng repository
clone ay_url

Observe your Repository
Listnew or mofie fles ot yet

commite

5 git status

Working with Branches
Ustalloc branches
4 it branch

st branches local and remote
& branch -av

branch,

Make a change

Synchronize

Stagesthe e,
§ git add (sle]

Stage al charged fles,ready for commit
$ git aca

and update working directory
ckout my_bran

Create a newbranch called new_branch
$ git branch new_branch

§ git ases
Show the cranges to sages fles
§ it difs --cached

Show allstaged and unstaged
fie changes
$ git aiee mm

Show the changes betveen two.
commitids
§ git dier comitl comit2
st the change dates and authors
forafle
$ git blane (ale]
Show the fle changes for a commit
idandror fle
§ git show [comnit]: [fle]
Show ull change istory

git log
Show change history or flefdirectory

inclucing difts
$ git log p [Sle/directory]

branch
$ git branch -d my_branch

Merge branch_ainto branch b
git checkout branch b
$ git merge branch a

Tag e current commit
$ git tag my_tag

add

y
$ git commit -n “comnit message”
Commitallyour tracked fles

versioned history

§ git comnit -am "comit message”
Unstages fle, keeping thefle changes

$ git reset (a1e]

Revert everthing tothe last commit
5 git reset —-hara

commit

Staging
(index)

(n0 merge)

5 git eten

Fetch he ltest changes fom origh
d merge

5 gie punl

Fetch the test changes fom orighn

and rebase

§ git pull ~-rebase

Push local changes to the origin

Finally!
When ot use g el
hets

Orvisit httpsitralning.githu
orofficial GitHuo training

Remote
Repository

JRebel

https://www.reddit.com/r/git/comments/5m5fdz/git_cheat_sheet/

References and credits

e CHPC presentation on Git*[1]
o Software Carpentry: Version Control with Git: Summary

and Setup

e Git - Documentation

1] Part of course slides are from the tutorial

https://www.chpc.utah.edu/presentations/git_2024.pdf
https://swcarpentry.github.io/git-novice/index.html
https://swcarpentry.github.io/git-novice/index.html
https://git-scm.com/doc

